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INTRODUCiLON

Sea ice is affected by ice motion in two ways: first, the velocity

advects ice from one region to another, and second, the deformations associ-

ated with spatial differences in velocity are important to the heat balance--

through open water formation--and to the momentum balance--through ridging

and ice stress. This report describes research applicable to both aspects

of ice motion, but concentrating on the spatial structure of the velocity

field and what this structure tells us about deformation.

The work is described tn three parts. The first is the measurement of

ice eisplacement from synthetic aperture radar (SAR) on the SEASAT satellite.

The important feature of these measurements is their h!,h spatial density--

2 km intervals along an 865 km track--which, clearly shows for the first time

the motion of distinct, rigid pieces of ice or floes. These measurements

show the difficulty--or at least the arbitrariness-in defining a velocity

derivative. The second subject is the analysis of these data and FGGE buoy

data to provide the spatial autocorrelation function of the velocity field

and to show how it is related to experiment design and the notion of (spatial)

velocity derivatives. Last, a model of the velocity field as the motion of

a set of pieces shows the uncertainty in estimating the amount of opening or

ridging in an ice cover from velocity measurements at only a few points, as

was done for instance during AIDJEX.

Two papers in which these subjects are discussed in detail are presented

as appendices. Appendix A is a paper by Hall and Rothrock on the SAR measure-

ment technique and data. It has been published in the JournaZ of Geophysicai

Research. Appendix B is a paper by Thorndike on ice kenematics. It defines

the spatial autocorrelation function, evaluates it from the SAR and buoy data

and describes the model of the piece-like velocity field; it will appear as

a chapter in a NATO volume on Air-Sea-Ice Interaction.

DISPLACEMENT MEASUREMENTS FROM SEASAT SAR

The objective is to compare two images of the same ice taken at two

different times and to estimate the movement of the ice during the time

interval. The difficulty is in establishing the relative location of the

two images. Our procedure was to use images from two nearly identical orbits

and to align the two images by comparing the portions over land. No effort

was made to establish absolute position.



The displacement from 5 October to 8 October 1978--or equivalently,

the average velocity Qver the three day interval--was measured at points

spaced about every two kilometers along a line 865 km long in the Beaufort

Sea. Figures 1 and 2 in Appendix A show the location of the images and the

data. Both components of displacement are presented as a function of dis-

tance along track. The motion of individual pieces is evident in the figures

and can in fact be found by fitting piece-wis't rigid body velocity profiles

to the data. The movement of several pieces is shown in Figure 3 of Appen-

dix A.

The along track component of displacement has an error which is zero

at the coast growing to about 3 km at the far end of the strip. This error

is due to stretching in the optical processor and could be reduced by

choosing strips with land in both ends (our strip included Banks Island but

stopped short of Siberia). The across track component of displacement has

an error of 0.4 km. This error could be Leduced by use of orbital data and

by correcting for the slant range distortion. We recommend these improve-

ments be made in future work with this type of data.

VELOCITY FIELD STRUCTURE a

The autocorrelation function tells how similar the velocities are at

two points a distance r apart. If r is as suall as a few kilometers, the

two velocities are nearly the same; so their correlation is unity. At large

r, the two velocities are unrelated-zero correlation. The autocorrelation

is described by two functions of r. Suppose the two points lie on tbe x-axis.

B1j(r) is the correlation of the x velocity components, and BI(r), the y

components.

u(o) U() B 1 (r) W u(o) u(r)
X 0 x r

v(o) V (r) B. (r) =v (o) .v (r)

X m0 X r•
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These functions have been evaluated from AIDJEX and FGGE buoy data and are

shown in Figure 16 of Appendix B. The notable feature is that the correla-

tion length scale is about 1,000 km.

These functions have several uses. In experiment design they allow one

to choose an economical sample spacing precluding either redundant data or

data gaps. They can be used to estimate interpolation errors for a given

data set (see §5.3.3.2 of Appendix B). One can estimate from them statis-

tics of deformational q\antities involving spatial velocity differences (see

§5.4.2 and .3 of Appendix B).

The notion of the velocity gradient Bu/ax has been central to sea ice

modeling, yet there is some difficulty in defining this quantity. A deriva-
lira u(x + h) - uW),bt h A

tive is normally defined as a limit h + 0o ±butthe

data (Figure 12 of Appendix A) show that such a limit does not exist every-
where, and where it does exist it describes the rotation of a floe, not a

"large scale" gradient. The derivative exists in the mean squared sense, if j

lira [u(x + h - U(X) 2
E - -c a constant

where E is the expected value operator. The existence of the limit is

equivalent to

variance (z(x + h) - u()) cho, as h* o

with o - 2. The SAR data, plotted in Figure 19 of Appendix B give t - 1.3

foru (a = 1.1 for v), giving further evidence that the velocity is too

irr..gular spatially for a good derivative to exist.

The lack of a derivative can be circumvented in two ways. The average

derivative over some region x can be evaluated as an integral of some

velocity component around the boundary of the region. The autocorrelation

functions then allow one to evaluate the error introduced by estimating that

integral with only a few (buoy) data points. (See 55.4.5 of Appendix B.)

It is important, though, to remember that the value of the average deriva-

tive depends on the size of the sampling region.
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Alternatively, one can replace the notion of derivative with velocity

differences. (See 55.4.2 of Appendix B.) Velocity differences exist with-

out question; they can naturally be associated with strain rates, and their

covariances can be estimated from B1 1 and BL.

MODEL OF THE PIECE-LIKE VELOCITY FIELD

The velocity field is demon ttrably the movement of rigid pieces. A

model incorporating this feature can be used to examine the practice of

estimating opening and closing (ridging) from velocities measured at three

or four points. We take the pieces to be defined by a random set of lines

(a Poisson field); the average piece size of 16 km is taken from the SAR

data. The differential movement of the pieces is given a Gaussian distri-

bution. Many realizations of this motion are simulated. For each, the

total opening (and closing) at the floe boundaries is plotted versus a

"large scale" estimate of deformation made from the velocity at three points.

Each realization gives one data point. The ensemble of points is shown in

Figure 24 of Appendix B. The scatter shows how poorly a three point strain

rate estimate allows us to determine the actual :mall scale opening and

closing. A better parameterization would account for the scatter.

RECOMMENDATIONS FOR FUTURE WORK

Considerably mo,,e can be dune with SEASAT SAR.

1) Further assessment of errors and tests of algorithms for eliminating

errors should be made by examining pairs of strips over land. Strips a

thousand kilometers long over the Canadian archipelago would be suitable.

One would treat the strips as if they were over ice with land in each end,
and apply all corrections for slant range distortion, orbital diffelences

and atretching by the optical processor aud then test the central portion

of the strip to assess the remaining positioning errors.

2) SAR ice displacement measurements should be made to extend the present4J

measurement back into the summer season. One might expect substantial

seasonal variations in the sizeE of pieces and the variance of the motion.

3) A sequence of three or more SAR strips should be analyzed to assess

the persistence of floe boundaries. Do the velocity jumps occur at the same

floe boundaries for weeks, or do floe boundaries change after several days?
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The answer is relevant to parameteriuing opening and closing in terms of

sparse velocity measurements*

Other new work could include:I

4) The spatial velocity autocorrelations should be computed for the 1980

Arctic buoy data.

5) The random piece-like velocity field model predicts considerable

uncertainty in our estimates of open water formation and ridging based on

velocity measurements. The implication is that the thickness distribution

and heat flux estimates have a similar uncertainty, which has not yet been

evaluated.
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APPENDIX A

SEA ICE DISPLACEMENT FROM
SEASAT SYNTHETIC APERTURE RADAR

by R. T. Hall and D. A. Rothrock

This appendix appeared in
the JoimaZ of GeophyeioaZ Reaearoh,

Volume 86(Cll), 11,078-82
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Images obtained by a synthetic aperture radar on SEASAT have been used

to measure sea ice displacements over a three day Interval in October 1978.

The position of a natural ice feature wasn measured on 5 October and again on

8 October; the difference in those two positions is a displacement. The dis-

placement of many features was measured. The tracked features lie roughly

along a line and are quite dense--about 2 km apart--over a distance of 865 km.

j ?he displacements are about twenty kilometers. Displacement errors grow with

dist~ance from shore becoming as large as 3 km. The graph of displacement

versus distance has occasional discontinuities of several kilometers. Displace-

ment discontinuities are accurate to 1 0.07 km along track and 3% of their

F magnitude across track.

INTRODUCTION

The motion of sea ice varies on all scales up to 103 km. The larger scale

motions are driven by atmospheric pressure systems. On scales less than about

102 km the motion is affected by individual ice floes. The motion has tradi-

tionally been observed by tracking particles of ice: a couple of drifting

manned camps, or a few buoys or radar reflectors. Each tracer is costly,

limiting any experiment to on the order of ten points. Such methods do not

reveal the spatial structure of the field of motion. What is needed are

records thousands of kilometers long, sampled every kilometer or so.

Tracking natural ice features in satellite imagery improves the sampling

rate. Following recognizable leads in LANDSAT visual photographs can provide

records over 500 km long with about 25 irregularly spaced data points--an

average spacing of 20 km [Nye, 1975]. Synthetic aperture radar (SAR) has the

potential to provide yet more dense measurements. Its high resolution and

sensitivity to surface roughness allow individual roughness features to be

tracked, and these are more abundant than new Jeads.

The last decade has seen a considerable amount of radar imagery collected

from aircraft. Airborne imaging radar data from 1975 was used to provide ice
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displacements at spacings of about 10 km over an area roughly 104 kmi'

[Bryan et aZ. 1977; LeberZ eat aZ. 1979]. But in general the distortion

caused by the wide look angle and the aircraft motion discouraged quanti-

tative analysis. It was not until generous amounts of quasi-corrected

imagery from the L-band SAR on SEASAT became available through NOAA that

the general sea ice community could experience firsthand the tantalizing

potential of radar data.

This paper describes a technique for measuring ice displacements from

these SAR images. It is not intended to be a comprehensive analysis of the

performance of the system, but rather a report on some encouraging results.

Measurements are presented of both components of displacement versus a single

horizontal coordinate. This data record is 865 km long and has 417 data

points--roughly one point every 2 km. Measurement errors are assessed by

applying the same method to images of land where there are no displacements.

The errors are discussed in terms of the satellite system and the optical

data processing procedure. It appears that SEASAT SAR can provide 3 day

displacements accurate to several kilometers and displacement discontinuities

accurate to one or two hundred meters. With sufficient care, these errors

could be reduced.

THE DATA

SEASAT operated from early July. until 10 October 1978, collecting SAR

data over swaths 100 km wide. More than l10 km of arctic data were collected,

half of this over sea ice in the Beaufort, Chuckchi and East Siberian Seas

south of 75*N. Often the sensor was turned on over North America, crossed

the Arctic Ocean and was turned off over Siberia. Hence, there is often land

at both ends of the swath which can be used both to eliminate some errors in

the data and to assess those errors remaining.
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The novel feature of SAR is that it combines data taken at different

positions along the flight path to synthesize a radar image from an antenna

much larger than actually used-thus providing the high resolution. [See,

for example, H&rger, 1970, or Reeves, 1975.3 The data are transmitted from

the satellite and stored in digital formt. The synthesis of the bulk of

this high resolution data is presently peiformed by the Jet Propulsion Labora-

tory in Pasadena by an optical rather than digital process. The 100 km swath

is processed as four adjacent 25 km swaths. The scale is 1:500,000; hence,

two millimeters on the film strip represent a distance of one kilometer. The

resolution of our images is about 0.035 km on the ground; 0.07 um on the film.

The film strips are 70 mm positive transparencies. Not all are of good quallty:

we received one strip with a systematic blurring and elongation of features

and another with double images for each pixel. The technical details of the

SEASAT SAR system are reviewed by Jordan [1980].

These images of sea ice look much like visual photographs. Many familiar

shapes and structures can be seen: leads, floes, ane ridges. The same shapes

are clearly recognizable in views of the same ice taken at different times.

The correspondence, howeve'r, between radar and visual images is not always

consistent [see, for example, 6.,yan, 1976].

To measure displacement, one needs to know the position of a recognizable

ice feature imaged from two successive orbits. Since there was no control on

absolute location, we chose to use orbits throe days apart (or a multiple of

three) because these orbits are almost identical. We examined in detail orbits

1396, 1439, and 1482 on October 2, 5 and 8, knowing from NOAA VHRR images that

there was ice movement during this period, and wanting the most winter-like

ice conditions. The data reported here are drawn from the latter two orbits.

The ground swath is shown in Figure 1. Furthermore, we looked only at features

roughly in the center of a single 25 km swath, thus avoidinR any need to register

the adjacent film strips and also minimizing the effect of slant-range distortion.
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MEASUREMENT TECHNIQUE

To identify features in two successive images, and to find their

initial and subsequent positions in a common coordinate system, we have used

a Bendix Analytical Plotter Model C. This machine normally functions as a

stereographic mapping tool; we have used it as an x,y digitizer with the

crucial feature that two images can be viewed simultaneously. A few guideI lines are drawn on the images to help keep the viewer oriented as he searches

for features. The two images are placed on the two viewing stages of the

plotter, and the stages are independently moved until the two cursors are

located on the same feature in both images. The x,y coordinates of the cursor

positions relative to the viewing stages are then recorded. With this equip-

ment, one can measure about twenty-five data points in an hour.

Since the Bendix plotter is designed to accept 24 cm x 24 cm aerial

photographs, our long film strips had to be analyzed piecemeal in overlapping

segments representing roughly 100 km of ground coverage. To reassemble the

data from the segments into one long data record, two reference points were

marked in the overlapped regions of each pair of adjacent segments and measured

in both reference frames. Thus, the data from each segment could be trans-

lated into the reference frame of the previous segment, and the segments

A reassembled into one long record.

The coordinate system is defined by a combined use of time marks and land.

The time marks are dots spaced along the edges of the film strip. They

define both the inboard and outboard edge of the 25 km ground swath even though

the imagery may extend a bit outside them. They would also define distance

along track except for some glitch in the system. Our x-axis is taken to

run through the inboard time marks on both images. The y-axis is perpendicular

to x through the most westerly land feature on Banks Island.
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Ice displacements (u,v) from initial positions (x,y) are plotted in

Figure 2 versus x only. The data disclose the motion of individual pieces

of ice. Each piece has a solid body -.-otation and translation; between

pieces are jumps in displacement. Figure 3 illustrates this by showing a

Si line drawn from the first to the last point on each piece both before and

after the displacement. We see rotations of several degrees, translations

of ten to twenty-five kilometers, and displacement Jumps up to several

These data resolve the discontinuous nature of the field of motion, and

they do so over a great enough distance to show many jumps. Thus we now

have a data set from which to theorize about the structure of the ice dis-

placement field and how the discontinuities in it change the ice cover. The

opening and closing of leads, however, cannot be obtained directly from this

one dimensional slice of a two dimensional displacement field. They require

the component of a displacement jump normal to a line of discontinuity (or

crack or lead), and we have not measured the directions of these lines. In

fact, these directions are not well defined on the images.

Plots of the quantities shown in Figure 2 were made to the same scale

as the image to see what correspondence there was between leads and displace-

ment jumps. The leads of this October scene are not the meandering angular

lines of April ice, but are more lacy like the open water surrounding summer

floes. These lacy leads change shape and size with deformation. One might

have expected the big events of deformation to occur where there was some

striking lead-like feature, but this was generally not the case. At all

large deformations we could see changes in leads, but the leads were usually

modest (less than a kilometer)--not those that stood out for their size (2 to

4 kin). Some areas which had many leads and looked ripe for deformation moved
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We ~ tre ofnd a mmeasurable feature at least every 2 km in x. In

some relatively featureless stretches, this was difficult; in others, we

could have found many data points in 2 km. Often one chooses a feature in

one image but has difficulty finding its counterpart in the other image.[

There are two effects. In successive orbits, a moving object is viewed from

different angles from which it has a different appearance to the radar. In

addition, the ice features in question are at the limit of the resolution

and are thus defined by a different grouping of pixels (picture elements) in

successive images. Hence, a small feature prominent in one image mhay be absent

in the other or distorted enough to make one uncertain where the cursor should

be placed. A somewhat lower magnification than the six power eyepiece in

our Bendix plotter would actually help one identify features. On land,

features were relatively easy to identify and measure, presumably because the

land is stationary and we had chosen to look at nearly identical orbits.

With the cursor on an ice feature in one image, our uncertainty in locating

the feature in the other image is comparable to the resolution ±35 m. This

error pertains to positioning a bright return in the film image. There is

still the question of how closely a bright feature seen in two Images corres-

ponds to one particular ice feature. We have not tested this, but the

positioning error for ice features can only be greater than that for image

features.

OBSERVED DISPLACEMENTS

The 25 km wide strips for the orbits we examined (Figure 1) include 460

km over the Canadian archipelago (x < 0) and 865 km of drifting ice between

x - 285 and x - 1150 km. We made no measurements in the near shore region

(0 < x < 285) where large displacements carried the ice to the extreme edge

or completely out of the second image.
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rigidly. Areas which moved approximately rigidly but did show some relative

displacement (several hundred meters)--like the noisy segment between x - 385

and x - 435 km--do in fact show many sites at which this deformation could

have occurred. This sort of motion seems consistent with an autumn pack

with many small floes being consolidated into a winter pack with larger pieces.

ERRORS

Our interest is in the accuracy of relative position (x,y), of displacement

(u,v) and of displacement differences (Au,Av). We have

U m 2 - X 1

a a

2 - 1

b a (1)

Au = (x• - xI) -. (2 x')a

kJ - (y2 - y) (Y2  y)

b Yb a a

where the subscript identifies the ice particle and the superscript, a time.

Discontinuitie3 in displacement occur for only a few unique pairs of adjacent

particles.

Systematic errors arise from various sources which we will discuss in

turn below. We cannot now eliminate these errors from thn data; the discussion

is aimed at eliminating them from future measurements of these SAR images.

There is a random zero mean error due to the 35 m resolution of the system.

Its standard deviation is 35 m in (x,y), vr-times this or 50 m in (u,v) and

70 m in (Au,Av). It is seEn in Figure 4 as the vertical scatter about the trends.

AZong track atretchin/. The mechanics of the processor can introduce stretching

of up to 1% in the &long track direction. We have compared our images to maps

and find 0.25 to 0.50% stretching. Conservatively then, we take our values

of x to have an error of 0.005 x.
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When two images are cotupared, this stretching may add or partially cancel.

We fin.'I that the image on October 8th is compressed about 0.26% relative to

A that on the 5th. This is the trend in Figure 4. Since this trend is not

necessarily maintained out over the ice, we do not correct the data. If

we had fixed land points in the Siberian end of our images, we would probably

have enough information to remove or reduce this error. The resulting error

¶ ~in u is roughly -0.0026 x; at the far end of the strip (x - 1150 kmn) this

amounts to 3 km. For displacement differences A~u, the errors in neighboring

U's effectively cancel..

Across track drift. Figure 4 shoiva a nearly constant error in v of -0.0001 x

+0.38 km. As with u. this error cancels when one calculates tAv for neighboring 1
features. The error in v can arise from several effects, two related to the

orbits and the third, to the processor. The two orbits are not quite identi-

cal but cross at a slight angle near their tops. This causes an apparent

across track displacement which grows with distance from the crossing. The

orbital data needed to remove this error are available. The other orbital

contribution to this error is made by the practice of taking satellite alti-

tude to be fixed when it actually is slowly changing along the orbit. Enough

is known about the actual altitude to remove these errors. Occasionally

(perhaps once or twice per orbit) the assumed altitude is corrected, and at

these locations along the orbit, there is an apparent jump in the across track

position. There were no altitude corrections in the images we studied.

Different processor set-ups can introduce an offset in the across track loca-

tion of the orbit on the order of a few hundred meters. This can only be

detected and removed by locating the x-axis with a land point as was done

with the y-axi~s. Again land points at each end of the pass (in the absence

of altitude corrections) would remove these sources of error.
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Ars roditrin Threainbtenthe slant range (the distance

fro th saellte o apoint x,y on the ground) and the across track coordi-

natey i no-liear.Forconeninceit is approximated to be linear,

intrducng disorton.Thespecification for the optically processed

dat istha ths dstotio beno orethan 3% of the distance from the

cenerlne f a25 m srip Wehav noIndependent check and so, use this

value. The greatest distance from any of our data points to the centerline

is 6.6 kmn, with an error of 0.2 km. The 3Z systematic error in y causes
a displacement error of 3% of v, and the error in Av is 3% of Av. It would

be a simple matter to correct all y values for the across track error.

DISCUSSION

Despite some early pessimism about the quality of the SEASAT SAR optical

data, from them one can obtain high quality measurements of ice movement. The

major errors in our measurements can be removed with more work and information.

One needs land in both ends of the ice imagery, orbital parameters (equatorial

crossings), altitude data, and the correct relation between the across track

coordinate and the slant range.

There is no handicap in working with images which have not been digitally

corrected. Coordinates of features can be measured from the slightly distorted

images and can be corrected by the same algorithms one would use to correct

the whole image, with considerable saving in processing cost and effort.

This statement may be as true for pattern recognition and area measurements

as it is for displacemaent measurements. Others have made this point [e.g.

LeberZ, et al., 1979], but we repeat it here for emphasis.

There are many ways to look at SAR data. Our approach has been limited

to making observations along a line. Thus, we have avoided making mosaics

( ~and have minimized the problem of mapping different orbits into a comumon
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coordinate system. Neither h~ve we attempted to establish absolute position

except for illustrating the orbit in Figure 1. Other researchers attempting

amore general treatment will encounter more difficulties than we have. We

are convinced though of the usefulness of these data and the pity of SEASAT's

early failure.

There are more pairs of congruent strips of SAR data between July and

October 1978. Their analysis could be expected to show some dramatic seasonal

changes in the velocity field structure, both in the sizes of rigid pieces and

in the variance of the motion. There does not seem to be enough data to

explore regional differences.

Given that knowledge of ice motion is essential to any study of massj

balance, high resolution radars are a pronising source of data on an opera-

tional level. Their disadvantage is their high data rate. An alternative

worth studying is collecting radar data only in a small fraction of the polar

oceans in data windows say 30 km in diameter spaced on a 500 kmn grid. The

data set would serve the same purpose as an array of buoys. The details of

the motion would not be observed operationally, but their statistics would

be known from a few records of the sort reported here.
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Figure Captions

Figure 1. Approximate ground path of the inboard SAR owath on 2, 5 and 8

October 1978. Solid lines ouaLine the portion of the path where

displacement measurements were m.ýde.

Figure 2. Sea ice displacements between 5 and 8 October 1978:

(upper) along track displacement vs. along track position, I
(Zower) across track displacement vs. along track position.

Figure 3. Motion of ice pieces from 5 to 8 October 1978. The line segments

represent floes moving rigidly from the lower position to the

upper position. For instance, the segment AB on 5 October moved

to A'BV by 8 October.

Figure 4. Apparent displacement over land from 5 to 8 October 1978. Since

the true displacement is zero, these data represent measurement

errors.
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APPENDIX B

KINEMATICS OF SEA ICE

by Alan S. Thorndike
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5. KINERATICS OF SEA ICE

Kinematics is that branch of physical science dealing with motion

itself and not with the causes of the motion. Attention is focused, in

moves as it does is addressed in the following chapter on sea ice dynamics.

For some scientific and practical applications, knowledge of the ice kine-I matics (as opposed to the dynamics) is sufficient. As examples, consider

gouging of the sea floor in shallow water, the transport of natural debrisI. or pollutants, the impact loads on structures, navigability in icy regions,

and the movement of the ice edge. Aside from these applications, the study

of kinematics is a basic step toward understanding the dynamics.

Figure I illustrates the idea that the motion of sea ice is the response

of the ice pack to external forces. To understand the response of the ice

one needs to monitor both the driving forces and the motion. Since we will

discuss only the motion here, there will be the underlying ambiguity oi'

whether the results inform about properties of the ice itself or about the

driving forces. We will see for example that the ice motion is nearly non-

divergent. But we should not conclude on this basis alone that the ice is

an incompressible material. The correct explanation could be that the n~t

driving force ±.s itself nearly non-divergent. Because of this ambiguity

in the interpretation of kinematic data, it is useful to think of the study

17 of the kinematics as part and parcel of the broader study of sea ice dynamics.

The fundamental kinematic notion is that all pieces of ice have an

identity which is preserved in time. If we identify a piece of ice say by

making a small mark on the ice surface at position X at time o ,the assunpttion

is that at some later time + , the piece of ice as identified by that mark will

be at a position X . This defines the position function x(t+,X) with x(D,X) ~

We do not mean to imply by this that ice floes retain their identity indefi-

U nitely, only that it is possible to track individual points. Two points

originating on the same ice floe may very well wander apart in time, but we

assume we could keep track of them.

There are difficulties with the notion of a position function. It is

natural to consider the space domain to be the two dimensional surface of

the Arctic Ocean, sayl:. At +90 there will generally be some points in X

which are not covered by ice, so X(,)is not defined for some XI
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Further, ice is always being created and destroyed thermodynari cally, so

the position function 9(+,X) is only defined for an interval of time.

Finally, the idea that the small mark retains its identity is question-

able. This is a common problem in the definition of the motion of a

turbulent fluid. After a time the marked fluid has mixed with th), unmarked

and it is no longer possible to assign a position to the mark. Something

of the same sort happens with sea ice. Despite these shortcomines, the

notion of a position function is the best we have. Furthermore this notion

corresponds exactly with most of the observations we have. We w~ill use

the term trajectory for the function 9(4,) where X is held constant. The

initial position X serves to label ice particles and we refer to the

trajectory X(+,X) of the particle

5.1 Observations

The most common observations of Ice motion are of trajectories of ice

particles consisting of a sequence of measurements (r&,'. , . where

The measurement error is represented by EL

In passing we mention that other kinds of measurementE of ice motion

have been made. Hunkins (1967) and McPhee (1978) for instance inferred the

ice velocity using current meters suspended from the ice into what they

assumed to be essentially a static ocean. These data were used to study

motion on the time scales of hours. An attempt to study motions on much

shorter time scales using accelerometers was made by Craig (1972).

Many techniques have been used to measure ice trajectories. These

are summarized in Table I. Each technique has its good and bad features.

Over the past decade most data have been obtained by satellite positioninr

which works somewhat as follows. Suppose a stable frequency is trans-

mitted by a device on the ice. The signal received at the rapidly moving

satellite will have a frequency I which has been shifted by the Doppler

effect: + . The Doppler shift 4 is related to the rate of

change of distance between the device on the ice and the satellite
" •'' '•|X•% -Al| The received frequency ý is measured at several

times. If the satellite coordinates are known at these times, then each

measurement produces an equation with unknowns and X . Generally

several measurements are made during the 10 to 20 minutes it takes for the
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satellite to pass by. The several equ~tions are solved simultaneously for

and ;dja . Precite positioning requ~ires a stable transmit frequency,
precise measurement of the received frequency, and precise knowledge of the

satellite coordinates. With care, errors can be controlled to the order of
tens of meters, es in the best uses of the Navy Navigation Satellite System.

Satellite systems which serve primarily to relay data from automatic

data platforms (or buoys) to data processing centers also determine the

location of the transmitting data platform, using the same Doppler positioning

principle. The ARGOS system currently on the NOAA-B satellite can relay

data from up to 30 sensors and determine platform locations to an accuracy
of a few hundred meters about ten times per day. Fully automatic platforms

cost in the neighborhood of $6,000 with additional costs depend-Ing on the

desired sensors.

Satellite imaging systems can also be used to measure ice motions, pro-.

Fvided that some features on the ice can be identified in a sequence of images.

Because of their all season and all weather capability and good resolution,

imaging radar systems will probably be best. The basic angular resolutionLI of these systems is approximately the ratio of the wavelength of the radar
signal to the diameter of the antenna. To achieve ar, angular resolution of
10-5 (10 meters at a range of 1,000 kilometers) with a wavelength of 25 cr.

(1.2 GHz) requires an antenna 25 km in diameter. Although such large antennas

cannot be constructed in space, it is possible to synthesize large antennas

by using data from several points along the satellite's orbit. The deterni-

"m±onliof the geographical position of an ice feature with the SEASATI data

contained errors of up to 3 kilometers (see Hall and Rothrock, 1981). Unless

these errors can be reduced the data are not particularly valuable for

measuring the displacements over intervals of a few days or Ikess. However,

the errors are highly correlated in space and are essentially eliminated in

* estimates of the spatial variability of the ice motion.

The attractive feature of imaging radar systems is their potential to

sample densely in space. Hall and Rothrock's work suggests that it will bej

possible to track roughly one feature per square kilometer, which will

resolve most of the spatial structure of the field of motion. Techniques

for extracting data from the images or from the raw data are still rather

primitive. N1o doubt satisfactory automated techniques for identifying and

tracking features will be developed when the need arises. At present there

is no imaging radar system in space. Planning is underway for a system to

be in operation perhaps by 1985.
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5.1.1. Sources of data

The earliest ice motion data are the trajectories of ships beset in

the ice. These are followed by the trajectories of numerous Soviet and U.S.

drifting research stations, and more recently by the trajectories of auto-

matic data buoys. The following list of data sources is by no means complete.

Experiment Reference Description

T-3 Hunkins et al., 1971 Monthly positions May 1962-
December 1970

Beset ships and Hastings, 1971 A chart showing most Drior
drifting stations trajectories, one point per
before 1970 month;includes: Fram, Jeanette,

Maud, Sadk.o, Sedov, Tegetthoff,
British Trans-arctic Ext.,
Alpha, Arlis I, Arlis II,
Charlie, North Pole 1-20, T-3.

AIDJEX 1972 AIDJEX Staff, 1972 100 kn triangle, Beaufort Sea,
March and April 1972.

AIDJEX Thorndike and Cheung, 1977 Manned camp positions and
1975-76 velocities tabulated at 6 hr

intervals, daily buoy positions.

1976-77 buoys Thorndike and Cheung, 1977 Tabulated daily positions of
Beaufort Sea buoys.

1979 buoys Thorndike and Colony, 1980 Tabulated daily positions,
25 buoys, analyses of surface
pressure plotted daily.

1980 buoys Thorndike and Colony, 1981 As above.

Fram I, 1979 Hunkins et al., 1979 March-Aay 1979; 84 01, 90W

LOREX 79 Popelar et al., 1981 Three stations, 100 kyr spacing
April, May 1979; 88 0 -90 0 N.

5.2 The general circulation

The main features of the long term circulation, Figure 2, are the clock-

wise circulation in the Beaufort Sea--and the motion of ice from the Siberian

coasts across the North Pole and through the Greenland-Spitsbergen passage.

Time honored nomenclature for these features are the Beaufort Gyre and the

Transpolar Drift Stream. Some handy numbers for these long term features a--*

center of Beaufort Gyre: 80N, 1550 W, half way between Pt. Barrow,
Alaska and the North Pole
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time to make 1 circuit: 5 years
time to traverse Transpolar Drift Stream: 3 years

area flux through Greenland-Spitsbergen Passage:
300 km2/day or about 20% of the area of the basin per year.

This pattern of motion exists only as an average over several years.

On shorter time scales there are departures from the long term pattern. Con-

sider for example the trajectories plotted in figure 3 for the year 1979 and
figure I for 1980. The trajectories are characteristically meandering and

convoluted showing that on daily and monthly time scales the ice motion

differs markedly from the long term mean. Notice the major anomaly which

occurred in the suzmmer of 1980 when the motion of several buoys for several

months was in the opposite sense from the long term mean. These departures

of the actual motion from the long term pattern in most cases represent the

If response of the ice to the passage of atmospheric systems.
If we ignore the forces and examine only the ice motion, the departuresr from the mean circulation appear aperiodic and chaotic. The departures can

be thought of as random but they are not without structure. Our objective

now is to clarify this structure.

5.3 Ice velocity

Here the particle label /Yplays no role.
This definition is meaningful only if the limit exists. From a practiLcal

point of view it is useful only if the limit exists and is approached when

the interval A decreases to the time interval 2' between observations.

In figure 5 several sets of observations of ice motion are plotted,

showing the variation of one coordinate of position versus time. Successive

data sets divide the sampling interval 'r by 15 and improve space resolution

the motion. By constructing velocity estimates, u.k(')' (tX./t

for k decreasing to 1, one can examine the limiting process. In the first

two figures of the sequence, u~k continues tchneapcibyfrsmall k
In the last two figures, Uk(4 at most times t becomes almost independent

of k for small kc , implying that on these time scle 'C 15 minutes,

the ice indeed possesses a velocity.
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Convergence of " to a definite limit implies that

the increment i(4÷'.S) - d* proportional to T for small T

For random processes, a useful condition for convergence is mean squared

convergence in which the variance of the increment becomes proportional

to 't' for small It . This can be readily tested for ice trajectories by

plotting Q(49 -(4,t))' versus % on a log-log plot, as is done in

figurel . The process is differentiable if the graph has slope of 2 for

small C .

From a practical point of view the process ceases to be differentiable

at measuremen intervals T for which the slope of the graph departs appre-

ciably from 2. The evidence in figures 5 and 9 implies that the ice does

have a velocity and that it can be resolved with a sampling interval of

about three hours.

Time averaged velocities can be defined without reference to the limit-

ing process. Let wT,x) be the time averaged velocity at .

X T

This quantity u{b.o) and its properties depend on the duration T of the

time averaging. For example, the variance of v(,,,) will in general

be less than the variance of u(,;) because the 7' average has sunprezsed

contributions to the variance on shorter time scales. Also, from a dynanical

point of view, the equations which u(i ) satisfies should involve T as

a parameter. Different physical processes may be responsible for determining

v. T, X) for different values of 7.
Typical ice velocities range from 0 to 20 cm sec-1 . An extreme velocity

of 140 cm sec- 1  has been observed. Two histograms of ice speed are shown in

figure 7 , one corresponding to a full year of observations, the other

restricted to summer observations. The winter data contained several periods

of essentially zero motion. During the summer the ice was never observed to

stop.

In the following pages particular impt-rtance is attached to the time

and space variability of the ice motion. We will often refer to the variance

of velocity, ((a-•)J÷(V-)):f. This quantity has been evaluated from many

observations; it varies appreciably with season and with location. Table3'

gives estimates of the velocity variance for each of the buoys shown in figure -.

B-6
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TABLE 11

1979 data, 1 po4nt per day-i

Buoy ID velocity variance number of data points

1901 59 cm2 sec" 2  3)42
i1902 48 295 ,

1903 50 284

1905 210 2313

1906 81 299

1907 37 229

1908 174 61
2909 38 267 1
1911 19 62

1913 84 314

1914 83 282

1915 172 31

1916 57 172

1918 35 2B3

1917 29 219

1920 54 293

1923 63 302

1924 167 72

1925 67 280

1926 168 59

31927 62 312

SI
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I
5.3.1 Velocity time series

The ice velocities deduced from trajectories should be interpreted

from the Lagrangian point of view since the measurements are made following

the material particle. If many trajectories are measured simultaneously

it is possible to obtain by interpolation velocity time series at fixed

Eulerian points. Although the Lagrangian description is more directly

measurable, it has the drawback of sampling both the time and space varia-

tions in velocity. The differences between the Lagrangian and Eulerian

points of view is not of great practical importance in the motion of sea

Ice. This is because most of the variability in the ice motion is driven

by the wind, and the space patterns in the wind field move across the basin

so much faster than the ice moves, that all points, Lagrangian or Eulerian,
experience essentially identical stochastic forcing. Consequently, Laerangian
and Eulerian time series of sea ice velocities look just about the same.

A typical velocity time series, taken from an ice station trajectory,

say, will have a mean velocity usually less than 3 cm sec, and it may show

a trend. When these effects are removed from the time series what remains

are the fluctuations with time scales longer than the sampling interval

and shorter than the length of record T. The AIDJEX position data for

instance, serve to resolve fluctuations on time scales from a few hours

up to a few months, ( ' a I hour, TO 1 year). Over this range of time

scales the Ice velocity has a power spectral density as sketched in figureg .

The power spectral density is plotted for positive and negative frequen-

cies corresponding to counter-clockwise and clockwise rotations of the

velocity vector. At the end of this section an algorithm is given for cal-

culating the spectra of vector time series. We interpret the velocity

vector time series &(• •) as a complex time series with the Fourier

decomposition

The power spectral density is the real function S(w) c ) o. (w) , defined

in the frequency range - •< W <

The integral of the spectral density over this frequency range is the

"variance , and the integral over any frequency band is the part

B--



of the total variance contributed by fluctuations with frequencies in that
band. A useful way to summarize the information contained in the spectrum

is to state the fraction of the total variance coming from frequencies

greater than a certain value. We find:

Table III Fraction of tojal variance from frequencies exceedina

frequency: 1 cycle per month 2 4  15 30 60

period: 1 month 2 weeks 1 week 2 days 1 day 12 hours

58% 45% 34% 12% 7% 3%

The equation of motion for sea ice balances the ice acceleration against

air stress, water stress, pressure gradient forces due to the sloping sea

surface, and internal ice stress gradients. While it is not the purpose

here to examine the ice dynamics, it is useful to relate features of the

ice velocity spectrum to these driving forces. In the central basin about

75% of the variance of th ice velocity can be explained by the local geo-

strophic wind (Thorndike and Colony, 1981). In fact, the ice velocity fluctua-

tions are roughly proportional to the local wind fluctuations. This implies

that the spectra of the ice velocity and of the wind should have atproximately
the same shapes (see figure .

The water stress depends on the difference in velocity between the ice

and the upper ocean. If the ocean is at rest the water stress is simply a

drag opposing the ice velocity and tts only effect is to reduce the ice

response near the inertial frequency. -

If the ocean is in motion, the ice will be carried along with it, and should

acquire spectral traits similar to those of the ocean. Unfortunately the

spectral signature of motion in the Arctic Ocean is poorly known. The long

term circulation of the upper ocean appears to be similar to that of the ice,

with a clockwise circulation in the Beaufort Sea and a transpolar current

flowing from Siberia through the Greenland-Spitsbergen passage. It probably

is not productive to ask whether the ice drives the long term ocean circula-

tion or vice versa because, in the long term, the ice should be thought of

as part of the upper ocean. In any case the long term ocean behavior does

not affect the spectrum we are considering since we have subtracted out the

long term mean velocity.
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Fluctuations in ocean currents on shorter time scales have been observed

but it is not yet possible to say how great their effect on the ice velocity

may be. Briefly they are:

1. Monthly variations are apparent in the currents deduced from wind and

ice motion observations by Thorndike and Colony, 1981.

2. Manley's (1981) study of subsurface eddies during AIDJEX described

numerous features with velocities of about 50 cm sec-1, a length scale of

10 kilometers, and a depth of 50-200 meters. He found no expression of

these structures in the ice motion.

3. Inertial oscillations. The balance between the ice acceleration and

the Coriolis force leads to oscillatory ice motion with a period which varies

from 12.77 hours at 70°N to 12 hours at 900N. Inertial motions are always

clockwise--hence the negative value for the frequency--in the Northern Hemis-

phere because the Coriolis force always accelerates the velocity to the right.

Inertial motions in sea ice were first described by Hunkins (1967) and have

received subsequent study by McPhee (1979) and Colony and Thorndike (1983).

The amplitudes can reach 0.20 m sec"1 during summer when the ice pack is

comparatively loose. Their effect on the summer ice velocity spectrum is

striking (see figure/D).

4. Tides. Tidal currents in the central basin are small because of the

great depth. Theoretical estimates are in the range of 1-2 cm sec- 1 . Over

the shallow continental shelves the amplitudes are predicted to be at least

an order of magnitude greater (Kowalik and Untersteiner, 1971). These

theoretical estimates are for the lunar semi-diurnal tide. Evidence from

tide gauges around the basin summarized by Sverdrup (1926) imply that the '1
lunar semi-diurnal (period 12.47 hr) and the solar semi-diurnal (12 hr) tides

are the dominant tidal constituents in the Arctic Ocean. i

The prediction of a large amplitude of the tidal current over the shelf

is confirmed by Sverdrup's observations from the Maud; Nansen may

also have observed tidal motion in the ice pack surrounding the Fram. Because

the tidal and inertial periods are so close it may be difficult to diagnose

observed motions correctly. Nevertheless there are several differences

between the two kinds of motions which can sometimes be used to distinguish

them. First the tidal vector traces out an ellipse during one period. An

ellipse can be viewed as the sum of a clockwise circle and counter-clockwise

circle. Thus, unless the tidal ellipse should happen to be exactly a

clockwise circle, it should have some expression on the counter-clockwise
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side of the spectrum. Inertial motion is strictly clockwise. Second, at

a fixed point, tidal motions should have a fixed phase, Inertial motion

on tne other hand, acquires a new phase every time the ice receives a

sudden impulse of momentum. Third, the phase of tidal notion should vary

smoothly and slowly in space. Inertial motions at different points may

have no fixed phase relationships.

The motion described by Sverdrup can hardly be mistaken for inertial

motion. The smooth variations in phase as the Maud moved from Wrangel Island to

the N~ew Siberian Islands, and the clearly ell';t4cal cycle described by the

measured velocity vector are not compatible with inertial motions.

Most ice trajectories which have been analyzed inthevestern literature

have been over the deep basin where the tidal motion is small. Careful obser-

vations and analysis would be required to detect a tid., component of order

I cm sec"1 since it would be mixed with an inertial component which is often
much larger and with a rich spectrum of other types of motions.

The Soviet literature contains many references to tidal motion in sea

ice. Doronin and Khiesin (1977) and Zubov (1943) each devote several pages

to the subject.

An important consequence of the tidal motion is the associated cycle

of convergence and divergence caused by the difference in phase of the tidal

cycle at different points. Periodic opening and closing of the ice in the

shallow seas has an effect on the heat exchange between the atmosphere and

the ocean and on the rate of ice production. The theoretical calculations

of Kovalik and Untersteiner indicate maximum divergence rates in the shallow

seas exceeding 106sec-1 which is enough to produce one percent opening

during the tidal cycle. Their theoretical estimates of the divergence rate

associated with tides over the deep ocean are three orders of magnitude smaller.

Calculation of cross power spectral density for two two-dimensional vector
time series.

Given: two discrete complex time series V%, , .. u/,.,,), with sampling

interval 2'

Step 1. Select M , the number of lags.

Step 2. Remove the mean and trend from each time series.

Step 3. Compute cross covariances

NA

J.
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,9,

Step 4. Define spectral window

+ C-, t

Step 5. Calculate spectrum b and frequency e-

k

5.3.2 Velocity correlations in tine.

An alternative characterization of a randon function is its autocorre-

lation function. The discussion in the previous section of the power spectral

density of the time function LL(4) at a fixed or moving point could have been

given in terms of the autocorrelation function

The two functions 3(-) and R(•) are Fourier transforms of each other and

>1 therefore contain equivalent information. Which description is the-nore useful

depends on the application. The spectrum is useful for distinguishing Physical

processes with distinct characteristic frequencies; for example separating

the free inertial oscillations from the wind forced motion. On the other

hand the autocorrelation function is more useful for questions related to

prediction or experiment design. For example the question: "How well can

tomorrow's ice velocity be predicted on the basis of today's velocity," has

an answer involving the autocorrelation function R(r) evaluated at t - I day.

The autocorrelation function is complex. Its real part contains informa-

tion about the lagged correlations of the )t component of veloc. y with itself
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and the • component with itself. The imaginary part has information aboutj

the lagged correlations between the X and • velocity components. If the

velocity of a piece of ice undergoing an inertial oscillation has a positive

X component at a certain time, it will have a negative a component three I
hours later. The imaginary part of the correlation should have negative

peaks at 3 hours, 15 hours, etc.

The autocorrelation function for the velocity time series at the AIDJEX

ice station Caribou is shown in figure 1/ . The autocorrelation function

estimated by the 1979 buoy data for the central basin is shown in figure /2.

The real part of the correlation falls to about 0.7 after one day, 0.4 after

two days, and decreases slowly at longer lags. The large correlation at lag

one day indicates that persistence (the forecast strategy which predicts

that the future will be the sane as the present) will have some skill for

one day forecasts.

As expected the autocorrelation from Caribou has negative peaks in the

imaginary part at 3 hours, 15 hours, etc. Generally though the imaginary

part is small. If the inertial motions ,are not of interest in a particular

application, the imaginary part of the autocorrelation function can safely

be ignored. This is equivalent to treating the two velocity components as

independent time series.

5.3.2.1 Applicatlon of the time autocorrelation function.

It is desired to estimate the ice velocity u. at time • given observa-

tions E. at times 4 ,1uI•".,N . Suppose the observations have zero

mean random errors t &j -u( )which have covariance

E~0- a

The delta function expresses the independence of errors at different ti.zes.

Finally suppose the errors are independent of the actual velocities. Choose

an estimator U which is a linear sum of the observations.

it is desired to find the complex constants 04i which give the best estimate

Sin the sense that IA)( IL is minimized. This is

accomplished by differentiating " with respect to the real and imaginary

L.' B-12



parts of each o(i and equating to zero. The result is the system of

complex equations for the unknowns ,.

A further reduction is achieved by noting that

Use of the matrix notation -["jo ,4

gives the compact expressions

. 'A A TZ
M"A P

Furthermore the estimation error is

'T -I

With these two expressions we can answer a number of practical problems.

1. What sampling rate is required to insure good two point interpolation

in time? For given sampling interval T and measurement error variance 0",

we write eq. / as

The solutions for the o(0 , which in this case are complex conjugates for

reasons of symmetry, and for F are sketched in figure /5. The solution

technique extends trivially to interpolation involving more points.

The optimal choice of the weights .4 and c is not &, 114a I PZ . This

linear interpolation between the two data points is the most natural scheme,

and it is quite good for small T , and small 71/4, but it is not the

optimal interpolation. Especially at large Z , a smaller error variance

is achieved by giving less weight to the observations. For very large TA

the optimal estimate is simply - (,u ,'o)since, in this case the

two observations are so removed in time as to have no correlation with

the desired velocity.
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The measurement error 0 affects and F slightly. The dependence

of F on the sampling interval T is quite strong. It appears that if

one needs to know each velocity component to 1 3 cm sec , F E v a':-g
18 cm sec , a sampling interval of about six hours is required even with

perfect measurements.

2. What errors are expected in forecasts based only on the present velocity?

Here we obtain

ij<' -/ +04 (3)

SThe forecast skill is plotted for several values of initial error in figure 14.

The prediction error grows with time, approaching the velocity var-'anre

for 2arge Z . From the sketch we see that an optimal 3 hour forecast

captures about 75% of the velocity variance, an optimal one day forecast

captures about 35% of the variance.

The velocity was assumed to have zero mean in this analysis and in

constructing the autocorrelation function (figures//,t) the long term mean

was first removed from the data. In an actual application to a region where

the mean is known the best forecast would be

L4-~ u + C 14 w

Note that the best forecast is not simple persistence (< = 1). For long

forecasts, the best estimate is the meanA ,as equation • correctly indicates.

5.3.2.1. Acceleration

The time autocorrelation function for veF.ocity, figures 11 and IT, behave

like /-V/C for small I. This im.lies that the velocity is not time

differentiable in the mean square sense. Attempts to measure accelerations

precisely by sampling over shorter and shorter time intervals may merely

result in larger and larger estimates of acceleration. Of course, time

averaged accelerations exist and have finite variance.

which for small 7 is 2f'/CT with C /OJft.
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It is frequently claimed that the inertial forces due to acceleration

of the ice are small compared to other forces acting on the ice. To support

4, this claim a typical average acceleration %. is compared for instance, to a

typical value of the Coriolis acceleration ;Fa h ID3cft- 10 L.Sac

Using the above estimate for and taking we find
7 < ;q- provided T" 2 seto uc . Thus, roughly a half hour time

average is required to bring the acceleration down to the level of other

terms in tne momentum balance.

5.3.3 Velocity correlations in space

In earlier sections the emphasis has been on the structure of the comrlex

function Lk of the real argument i , at a fixed or moving point. In this

section, the emphasis is on kX as a function of position for fixed time.

Certain results are more easily expressed if U. and % are regarded as two

dimensional vectors rather than as complex numbers. The autocorrelation

function

is a 2 x 2 matrix involving possibly four different functions, whereas the

time autocorrelation function involves just two.

The structure of the spatial autocorrelation matrix for sea ice veloci-

ties reveals some of the properties of the velocity field. To establish

the basic ideas we firc:t determine the structure of the autocorrelation matrix

for a homogeneous, isotropic, two dimensional velocity field, borrowing from

Kolmogroff's (194i) classic discussion of three dimensional turbulence.

A random field is said to be homogeneous if its statistical properties

are invariant under a translation of coordinates, and isotroric if they are

invariant under rotations and reflections of coordinates. In particular the

autocorrelation matrix for a homegeneous isotropic field must satisfy

x.) + ) for any ., ancd

for any orthonormal matrix 1 . Multiplication by an orthonormal matrix
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accomplishes an arbitrary rotation or reflection of coordinates. Note

that the change of coordinates is applied to both the position and the

velocity vuctors. These definitions make precise the notions that the

statistics do not depend on position or direction. By choosing the trans-

lation vector M. or the rotation and reflection matrix M suitably, we can

see how these definitions of homogeneity and isotropy constrain the form of

the autocorrelation matrix.

First, , .xe) depends only on the vector difference XI-X,. To

see this, take D, -X . Note that this does not imply that • depends only

on the distance P-,H.

Second, R is symmetric. This requires using 0. , -A M and

, to obtain this sequence of equalities:

Third, [s.d.,o.V(•,o) =c . Here use the reflection invariance in the

definition of isotropy by taking

M~

which changes the sign of the 4 axis. Then

which is only true when a),ov(%, a) .

Consequently the autocorrelation function evaluated at ;' --(@,) (i, V')

has the form

involving only two function of distance. 81. is the correlation between

the components of velocity parallel to the line joining two points separated

by a distance T. L(-r) is the correlation between the components of

velocity perpendicular to that line.

More generally if ;t, and %z are arbitrary points with V't (X,"z) . ,,)-

S(;-K)/r and . then
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I-A A

'x. oXril

which is the general form for the autocorrelation matrix for a homogenecus,
Sisotropic two dimensional velocity field. It involves two functions 1|,

and SL which we will estimate below from observations. Further it involves

the separation r and the orientation 6 of the two points A and It at

which the autocorrelation is being evaluated. It may seem strange that •

enters the statistics for an isotropic field. The condition of isotropy

does not imply that E'oCo)• €) equals F-4 te,•) 4,V however. A

rotation of coordinates affects both the velocity and the position vectors.

A valid statement is j tJ.()W•o) = v(o,o0) v(C,1•) See figure 15.

There Is another constraint on the spatial correlation function. Let

= (•,v•) be the velocities at any set of points X4 , •'),N and let

be arbitrary real numbers. Then the linear sum

has a variance which can be expressed in terms of The added constraint

is that VWr (s)•o for all choices of XL , e, c*, . This r.quires that

the matrix consisting of the correlationSof the velocity component at any

"set of points 1XJmust be positive definite (all positive eigenvalues), and

is equivalent to the condition that the two dimensional spatial power spectrum

of velocity be positive for all pairs of wave numbers (i1,N"A)

Contradictions can arise if correlation functions are used which do not

satisfy this constraint. For example, suppose we wish to consider a velocity

field for which al 1(a)' I, Gil(L) 0.1 O'I Gil(2L) L 0.5 . The

attempt to evaluate the variance of 61 •.i b)- .5 dLe) o.&t(24L,o) in terms

of these correlations produces a negative result. Since variance is intrinsi-

cally positive, we must conclude that no velocity field could have the presumed

correlations..
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As an e"ýample of an analytical form for R which satisfies the positive

definite constraint and bears some resemblance to reality, define

This example was constructed by taking a stream function with the posL-

tive definite correlation function e(r)a The corresponding power

spectrum is the Hankel transform of (U This is ,;AV (', ,

which is always positive. Now define velocity components v. - , ,

Xi-) and ez -er'-v : •/•and deduce -)_ _ -'by

5.3.3.1 Estimates of the autocorrelation functions.

In order to estimate the autocorrelation matrix, simultaneous vebocity

observations are required at pairs of points separated by distances ran-

from roughly I to 10 kilometers. We present data from the 1979 buoy pro-

gram and from AIDJEX which define the functions Bil and Q only for

distances exceeding 100 kilometers. The 1979 data were first interpolated

to give velocity estimates at a uniform grid in space and time.

The mean velocity over all points ,.jk was removed. Then for lags ,,
the lagged correlations were found using

I ti E7 a

For these calculations •/, = 7, I V? , and A 200. The results are sketched

in figure /d for the lags I s, ... , 7, 9 = w 0, and = n 0,

- 1,..., 4. The results show that F k(C,o) 0)A¶) and v(C,r' V((,')

are similar functions of t , and that FvY(,')Lk(r,'), 'k(t Olv(,',),

rL(*'Do)V('rJO) , &aJ Fob)k(c ) are all small. These observations

are roughly consistent with the assumption that the field is homogeneous

and isotropic. We will proceed then on the assumption, supported by these

"*,ta, that the ice has a homogeneous, isotropic velocity field with the

functions 3 and (
3
j empirically determined from figure .

Correlations for the AIDJEX data were constructed by choosing two of

the ice camps, resolving their velocities into components parallel and permen-

dicular to the line joining the camps, and correlating these components.
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These correlations are also plotted in figure l1.

5.3.3.2 AUlications of the space correlation.

The spatial autocorrelation function is the basis for sound experiment

design and data processing. For instance, suppose observations of velocity .

are made at N points 9 with independent zero mean errors having vari-

nece a" . Estimates of velocity are to be made at arbitrary points $ using

these observations. What is the maximu estimation error? We use the too's

developed earlier. To estimate the t component of velocity at • , we use

the observations .,•w and construct the matrices

R V, ' $A R.V. + R V

* . . . . . V ,

0, "A 0,w 4 •

where RA , gVj Lt()v( ) etc. as given by Eq.j • The esti-
mation error variance is given by Eq. 2 . Figure / shows how the maxirniA

estimation error depends on the separation between measurement stations and

on the measurement accuracy. T71 •urve labelled el'o aO refers to the idealized
condition in which the measurement errors are zero. Thus it represents the

interpolation error which is due to the intrinsic spatial variability of the

velocity field.

The standard deviation of the ice velocity itself is about 1- 10 cm sec-

A reasonable observational goal is to keep the interpolation errors below 2 or
-I

3 cm sec . This can be achieved if the raw measurements of velocity are

good to about 3 cm see- and the grid spacing is about 400 km. At larger

grid spacings the interpolation accuracy deteriorates rapidly.

5.4 Deformation

The differences in v4locity from place to place are responsible for the

characteristic morpholog of the ice. When the velocity difference between
neighboring pieces of ice is such that they tend to move apart, a lead forms
and widens exposing the ocean surface to the atmosphere. During the winter,

ice growth is rapid over open leads. If the motion changes--perhaps because
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of a change in the winds--so that these pieces of ice move toward each ot -er,

the open lead will close, and any new ice which formed there will need to

rearrange itself to occupy a smaller area. Typical mechanisms for this

rearrangement are rafting where one part of the new ice sheet overrides the

other, and ridging w.here the ice is crushed into pieces which pile into

ridges rising a meter or two above and sometimes many meters below the sur-

rounding ice. Ridging and rafting are not restricted to thin ice. If the

closing motion continues, the original pieces of ice come in contact and

one may override the other or, by grinding together, pieces may break off

and pile up and down to form a ridge. The essential ideas here are that

the ice accommodates divergent motion by increasing the area of open water

rather than by stretching and thinning. It accommodates convergent motion

by reducing the area of open water and by ridging and rafting. These processeE

link the morphology of the ice, characterized by such features as floes,

ridges, and leads, to the spatial differences in the ice velocity. By

studying the spatial variations in velocity we may be able to understand

better why the ice pack has the form it dcs.

There is a second reason for studying the deformation of sea ice. As

the ice pack deforms, stresses develop within it which tend to oppose the

deformation. These stresses figure into the local balance of forces and

therefore affect the motion of the ice. To be more precise, the balance

of forces equation contains terms of the form kjlg-where f
is the stress tensor. The stresses are in turn related to the ice moti.on by

a constitutive law

stress a F(deformation).

One of the motivations for AIDJEX was to investigate the function F fro.

a theoretical point of view and by using observations of the deformation and
Indirect estimates of the stress (see lRothrock et al., 1980).

The concepts which have been applied to the study of the spatial varia-

tions in ice velocity are those appropriate to the analysis of the deformation

of a continuum. The fundamental concepts are the partial derivatives of

•.(ge 1 ) and V(%,t with respect to ;K and . . The line of thought is

that a description of the large scale deformation in terms of large scale

average derivatives should give some idea of how much opening and closing

is going on on smaller scales and some idea of the state of stress. For
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example under a purely divergent motion only leads are formed. During a

purely convergent motion no leads are formed. On a small scale, shearing

along a crack is of no morphological consequence. But large scale shearing

is often expressed locally by opening at some cracks and closing at others.

Mathematical formulation of these ideas requires two steps. Required

first is an appropriate quantitative description of the large scale defor-

mation in terms of observable parameters. The second requirements is for

a functional relationship giving the opening, closing, or state of stress

in terms of the observable parameters.

Current practice is to describe the motion in terms of the large scale

strain rate invariants, which themselves are constructed from the large scale

velocity derivatives. The first invariant

Lb&

quantifies the large scale divergence and convergence, and the second invariant
= )'

(r) e ,) where

expresses the total rate of deformation and

t6,71 O.< e<

2,ndicates whether the motion is predominantly divergence -0o , shear 7/2

or convergence

In the theory presented by Thorndike et al., 1975, opening and closing

are assumed to be known functions of 9 and proportional to W).

A , total opening - I ,(•) 
I

C " total closing - ,E) • (b) "

The functions .,, and 00..r which give the total opening and closing in

terms of the strain rate invariants may have a form somewhat as sketched in

figure 13. There is not much hard evidence to base these sketches on. In
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fact the functional relationships for A and C in terms of 1(1 and

can only be regarded as approximate since they do not take into account the
actual geometry of the floes In the region being considered. Different

[ regions with t~ifferent geometries will respond differently to similar large

scale strain rates*

Ji In practical applications of these ideas the procedure has been to

take measured velocities at several points in a region of interest-perhaps
the three corners of a 100 km triangle. Velocity derivatives are estimated

from the measured velocities. The estimated velocity derivatives are com-

bined to form the strain rate invariants Ir) and *,and these are used

to find the rates of opening and closing A and C ,and the state of stress 711 In the following sections we reexamine some of these ideas, particularly
the notion of velocity derivatives, the influence of the ice pack georetr:.'

on opening and closing, and the difficulties in basing inferences about

these quantities on small numbers of measurements.

5.L.1 Velocity derivatives

Since the ice pack is made up of discrete pieces moving relative to each

other, the variations in velocity have two types:

1611) for any X, and Xt on the same rigid piece, the linear relation

I ~must hold, where w.

is a constant related to the rate of rotation of the rigid piece.

2) for %,and !%, on separate pieces,

J - is a~rbitra~ry.

P If we select a random poi nt (z)on an ice floe, the partial derivative
of velocity,

I eldefined because for small enough an (74 ams

always lie on the same floe and the linearity of the first type of motion
mentioned above implies the existence of the limit. Thus the partial deriva-

tive exists, but it describes only the rigid body rotation of a floe. It
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says nothing about the relative motion between floes which in after all the
motion causing the opening and closing and the exchange of momentu between

floes.

To include the effect of velocity differences between floes we cannot

let f become arbitrarily small. Consider the velocity increment

- where (%,I) is fixed and • begins at 100 km

and decreases to the smallest value R. such that (p4.0 ) and (0, ) lie
on separate floes. This increment captures the variation in velocity from

floe to floe and has nothing to say about the rigid rotation of the floe

(X,) lies on. The velocity increment will generally decrease as
approaches A. , and we can examine the characteristic rate of decrease by

evaluating the variance C . If this quantity

is proportional to V for small • , the velocity at least has a derivative
in the mean square sense.

The best data available for examining the variance of velocity increments

for a range of spacings were extracted from SEASAT synthetic aperture imaging

radar by Hall and Rothrock. By comparing two images separated by three days,

they were able to measure the displacement of enough ice features to resolve

the full spatial detail in one dimension of the ice motion. After interpo-

lating to evenly spaced points %• their data have the form

Given 1 1, ... , the g-increments were defined as

The variance of the increments was estimated from the

with the results plotted in figure 17. The linearity of the log-log plot
for small 9 supports a power law relationship with V'. (X(I)) M ) with

then that the increments do not decrease as fast as P , and therefore

the velocity does not have a derivative in the mean square sense.

The statement just made for the variance of increments can be recast in

terms of the autocorrelation function. It implies that for small r

-
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thus helping to define the shape of G3 and G at ' * At , so ,

and 1BiL have the value unity, are continuous, have a continuous first

derivative of zero, but fail to have a second derivative.

5.4.2 Velocity differences

The definition of the derivative as a limit could be discarded in favor

of a velocity difference over a finite distance,

L

and similar definitions for .ý,L VXL ' • V).L

There is no question about the existence of these differences. Defi-
nitions for strain rate invariants follow naturally by associating L-X,
with 6•/4X etc. in the earlier definitions. Wen L is chosen to be of

order 100 kn, these definitions can be used to describe the large scale

deformation.

There are several problems with this approach. First, the L-differences

carry no information about smaller scales. Second, no basis has been given

for choosing a particular value for L . Third, measurements of velocity are

rarely available at uniformly spaced points. Still most analyses of sea ice

strain have been done with a length scale implicitly fixed by the scale of

the observations. To interpret these analyses we must determine the role

played by ..

Consider the covariances between the various L-differences. These
follow from the covariance structure of the velocity itself. For exen.ple

o -2 B1 - 01, (r-L (

ITo interpret this equation, suppose the L-difference LL.L is measured

at two points separated by a distance t along the X axis. The right hand
aide of equation approximates the second derivative of at Ir

For small 3 , 13 is concave down so the two L -differences are positively

correlated. At some value of 'r , 8#(T) has an inflection point. Over

such a distance the L -differences become uncorrelated; at longer distances

the L-differences are negatively correlated. This example has been worked
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for the UXL component at points separated along the % -axis, but the

same procedure can be used to correlate any two first velocity differences

at any two points.

It is apparent from this and figure I• that quartities related

to the 4 -differences are highly correlated in space only over distances

of less than about 400 km. Furthermore this statement is not sensitive to

the choice of L , since the expression J. will change sign at approximately

the same ? , independent of L . The correlation length scale for velocity

by comparison is roughly twice as large (see figure i1).

The ice velocities are well correlated at distances of up to 100 km,

as evidenced by the patterns in the long term ice motion (figures 2-4) and

in shorter term motions (see Thorndike and Colony, 1980 for instance). It

may seem surpising not to find similar patterns in the strain fields. The

reason why such patterns are not found is that the strain field has, by

equation 5, and figure 16, a correlation length scale of only a few hundred

kilometers. Measurement arrays like the 1979 and 1980 buoy arrays with

a buoy spacing of roughly 500 kilometers are too coarse to resolve patterns

in the strain field.

For the example just worked we can find the variance of the L -difference

by setting tLO

The symmetric matrix of covariancesbetween pairs of L -differences at the same

point is

L %AL1. L L.

Lw (a [i) -~(~ L' L

VP L

This matrix can be evaluated at m 400 km for example by reading points

from the plotted functions and in figure 11.



-P-- a.t4 .t

J

?j A L 164.3 1. V .7LA

Vj r, L , •I . • .Vr

The covariance matrix for the L -differences illustrates several prcperties

of the way the ice deforms. Notice that the variances of the parallel dif-

ferences &l4 and V L are smaller than the perpendicular differences and

Vx, . The parallel differences relate to the linear stretching and

contracting of tbe ice pack. The perpendicular differences relate to shear

and rotation. Apparently the second type of motion is greater, but recall

the word of caution given earlier that the interpretation of this kine:.a:...c

evidence is amibiguous. We cannot say whether the observed notion refle.ts

some property of the ice pack or some characteristic of the driving forces.

With the L-differences one could define L-strains in a natural way.'.

The statistics in Tablej" of the L-strains follow from the above matrix.

These values predict, on the basis of the spatial correlations above, that

the large scale divergence will typically be smaller than the vorticity and i

shear, a prediction verified by many different sets of observations.

Table Li-

lo P tt4r

100 O h oo 0oo

#F (L)(~L+G±JiLj 2 2.2

+ 10, ( L)4 r2 L)~U + "32 3.2 2.

I

IV(, W, I. L -1 16
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5.4i.3 Deformation measurements

Several studies have been made over the past decade or so using obser-

vation of velocity at an array of stations, with the objective of monitoring theI
large scale deformation of the region covered by the array. While it is never

stated just this way, the Implicit definition of large scale deformation appears

to involve spatially averaged derivatives over the region,

where A is the area of the region &sampled by the array. Similar expressionsj
define the other large scale average velocity gradients. Ap-Dlication of the

G reen-Gaus theorem implies

C

where 47is the outward normal to the perimeter Cof ,and a unit vector

in the X direction.

N~ote the difference between the L-difference and the large scale
average derivative. The former can be measured exactly as --

telatter requires measurements at every point around a closed curve. In the
next section we will discuss how many measurements are required to achieve a

desired accuracy in the large scale defornations. But first we review some of

* the results of the studies just alluded to.

In these studies the deformation estimates were made by finding the

linearly varying velocity field which most closely fit the observed velocities

at an array of points withivi R~.

a+

>1where the matrix M contains the four large scale average velocity partial deriva-

tives. M and L4. are determined using a least squares fit of the observedi
velocities L&. and positions -X The strain rate invariants were then computed

from the elements in 1
The values, given in Table I ,confirm some of the results deducedI

above from the observed spatial correlation functions. For example it is clear

that the vorticity is generally several times as large as the divergence. The
h ~Standard deviation of the di.vergence and the shear are roughly the same size,

but the mean shear is much larger than the mean divergence in most cases.
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The distribution of the invariant G is plotted in figure20 . Note

that nlearly always ) < 0&< y . In this range, the two principal values

of the strain rate tensor have opposite signs. The figure indicates that

it is almost always the case that when the ice pack is extending in one

direction, it is contracting in the perpendicular direction. Hibler et al.,

1974 also coments on this for strain measurements on a 20 kilometer scale.

It is also evident from Table V that the summer values are usually

somewhat greater than the winter-spring values. Presumably the ice pack

is weaker and offers less resistance to deformation inthe summer. (Theii alternative hypotehsis, that the driving forces are larger in the summer,
S~is not true.)

The mean quantities in Table V produce large strains over the course

of a year. The year long deformations at the AIDJEX arrays are shown in

figure 2 ) . The region experienced a net clockwise rotation of about 350.

The principal deformation involved a stretching of about 90% in the east-west

direction and a contraction of about 40% in the north-south direction. The

net divergence was not significantly different from zero. The two nested

arrays expressed similar deformations.

- Deformation estimates at a number of points in the central basin for

the years 1979 and 1980 are presented in figure 2Z. The strain ellipses

typically show large shear and small divergence. The only pattern evident
in the figure is the similar alignment of the major principal axis of shear

for the five points closest to the pole. Ve should not expect to

see any patterns in the deformation displayed on this scale. Recall that

the spatial correlation function for L-differences has a length scale of

only about 400 kilometers. The deformations at points separated by greater

distances should evolve more or less independently.

5.4.4 Interpretation of deformation measurements

A number of authors have confronted the difficulties of describing

the deformation of this decidedly discontinuum. Nye (1973) for instance,

puts forward a definition of "strain on a length scale L ." By first smoothing

the velocity field using a kernel of length scale , he obtains a new

velocity field which is differentiable and for which the usual notions of

deformation based on partial derivatives are valid. Papers by Hibler et al.,

1974 and Thorndike and Colony, 1977 take a similar point of view by attempting

to partition the ice deformation into two parts. The first part is assumed

to be associated with the spatial variation of the atmospheric and oceanic
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forcing fields and with the geometry of the basin, to have a characteristic

length of 103 km, and to be differentiable. The second part is associated

with the irregular, discrete geometry of the ice pack. It has length scales

less than 10 km and is characterized by discontinuous variations in velocity.

In these papers, the first kind of variation is referred to as the large

scaleounderly.ng, continuum, or linear part of the velocity field, while

the second is referred to as the small scale, local, perturbation, fluctuatinr,

or non linear part. Velocity variations of the first type are regarded as

signal and those of the second type as noise. This nomenclature reflects

the hope that. any physical process of interest can be parameterized in

terms of the large scale signal, with small scale noise only making it

difficult to measure the signal well.
I This convention obscures the true nature of the velocity field w.'-A•

is that it has variations on all length scales, with a smooth decrease in

anplitude for decreasing length sc.ales. There is no clear division between

large and small scale. Furthermore there is no clear reason to associate

large scale with signal and small scale with noise. For studies involving

the actual opening and closing of leads, the small scale phenomena may indeed

be the signal and it cannot readily be parameterized by the large scale notin•.

Perhaps a better conceptual model of the spatial structure of the ice

velocity is a system which accepts a smooth input and produces a discontinucus

output. (A simple exariple of such a system is the greatest integer fucin

LJ 3 greatest integer less than or equal to s
-- The shift in emphasis from the earlier model is this. The earlier node2

viewed the velocity as the sum of separate contributions,one smooth, one

discontinuous. The alternative views the velocity as a discontinuous respcnse

to a smooth input. This point of view may lead more naturally to phenone-

nological descriptions of the properties of the ice pack, through a compari.son

of the input and output fields. To my knowledge this has not been attempted

because data with adequate spatial resolution of the velocity field are still

too scarce. Such a study would not explain why the velocity field had

certain properties. That explanation must be based on rather deeper u~nderstar.ding

of the geometry of the ice pack and the forces which act between floes than we

have at present. Still it would be useful to compare some of the properties

of the ice velocity with properties of the external driving forces, i.e., the

geostrophic wind and the ocean currents.
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5.4.,f. Errors in estimating the large scale deformation

The large scale deformation estimates of the previous section are

subject to sampling variations since they depend on the particular array

of measurements points. There have been several attempts to quantify the

sampling errors. Hibler et al., 1974; Nye, 1975; and Thorndike and Colony,

1977 examined the departures of the measured velocities from the best fit

linear relationships. These departures, called residuals, homogeneity

variations, or nonlinear fluctuations, represent the variability of the

actual velocity field on scales smaller than the diameter of the region of

interest.

From observations over a 200 km scale taken during the spring of 1972,

Hibler et al. found root-mean-square velocity residuals of 0.06 cm sec-I,

compared to typical linear changes in velocity (L-' .# ) over 20 km of

0.14 cm see".1  Thorndike and Colony used observations from a 100 km scale

taken during the spring of 1975 and found rms residuals of 0.4 cm sec- and
-I

typical linear changes over 100 km of 1.1 cm sec . Their summer values were

somewhat larger: 1.1 cm sec and 1.8 cm sec" for the nonlinear and linear

contributions. These residuals can be regarded as errors with respect to the

large scale average derivatives for the region. When the number of observa-

tions is small, the estimated large scale deformations are strongly contarninated
by these errors.

Using what we know about the correlation functions for velocity, we can

profitably address the sampling question from a different angle. Taking the

line integral definition for the large scale velocity derivatives, we ask:

how many points around the perimeter of the region must be sampled to resolve

the integral to some desired accuracy? Intuition suggests that the measure-

ments should be spaced closely enough to permit good interpolation but not

so closely as to be highly redundant. A correlation between velocities at

neighboring measurement points of 0.5 might be a fair guess; this would

indicate a spacing of about 400 km.

To get a better answer, we estimate the line integral in equation 6

around a circular region of radius r as

1.M.

Then as the number of measurements M increases, 1) approaches 6w .

Since t is a linear combination of velocity components, we can find its
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variance in terms of the variances and covariances ofthe velocity components

at all M points, and these can be evaluated in terms of the correlation

functions GI and %A . Let LL be the vector involving all 2M velocitv

components, A be the vector of coefficients, and k be E LAJ . Then

A'U. and ' ze A *This calculation has been done
for M = 60 which was large enough to resolve bi./x . The dependence

of E on the radius r is shown in figure 23o.

The figure shows that typical values for 1 are about 1% per day,

decreasing somewhat as the radius of the region increases. Of co-arse this

curve is a consequence of the observed functions G and 0. . . The share

of the curve for radii smaller than 100 km remains speculative until more

details are known of the behavior of g and 8-L for small arguments.

The variance of the error in estimating bL.Ax using only tr points,

S- D•o can be calculated in the same manner simply by redefining

the coefficients in the vector A . These results are presented as a fra~tion

of the signal variance F(D•)in figure 23 . When M is 3, as was the
4A

case for AIDJEX 1972, the 1975-76 manned AIDJEX array, and LOREX 79, and

the radius was about 100 kn, the ratio of estimation error variance to

signal variance was about 0.25. For a radius of 400 km and a spacing between

stations of 400 kin, M a 6, and the ratio of error variance to signal variance

is about 0.01. This confirms our intuition that a spacing of 400 km should

be adequate to resolve the large scale average velocity gradients quite well.

Figures 23C and 23d show results obtained in a similar way for the

large scale average derivative -bv/1• and for the large scale average diver-

gence. Accurate estimation of the large scale average divergence has srecial

importance because of the role it plays in the theory of the ice thicknes

distribution. If we want to keep the rms error in divergence below say 23ý

of the rms divergence we require a ratio of variances in figure 23Jof 0.22 = 0.04.

For a region of radius 200 kilometers this level of accuracy can be achieved

with 6 measurement stations.

5.4. • The relationship between measured large scale deformation and total

opening and closing .

Suppose a region of interest is intersected by a number of cracks, each

of which Is opening or closing at some rate. If the rates were known, the
total rates of opening and closing for the region could be found. In practice

we are not able to measure the motion at each crack, but only the motion of a

few points in the region. How are we to use these few measurements to esti-

mate the opening and closing?
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In an analogous situation in one dimension, we have A cracks each with

opening or closing rate LA We can imaine the velocity . to
ie

be a random function of )( having random discontinuities at random points

and being constant between the points. Suppose we have measured only the

motion at the end points of the region, an interval of length L • Then

4: IL - awi~ UoI• ) . A.C

and the problem is to estimate A and C given U . At first sight the

situation seems hopeless. U. clearly contains information about the net open-

ing or closing but not about the total opening and closing. However, knowledge

about the random variables CL tZ ,.Ltk can be used to make probabalistic

statements about the opening and closing. Suppose for instance h has the

Poisson distribution with parameter A . This means that AL is the average

number of cracks in an interval of length L . Then the Drobability of

finding k cracks in a random interval of length L is

If * 0.1, for instance, the probability of getting k 0 is 0.9•51,

r'k'/) - 0.0905, and r(k>/) > 0.0045. Therefore, with high probability,

there is either no crack or just one in the interval and the observed value

of the velocity difference UL would itself indicate the total opening and

total closing. Of course for larger AL it becomes more likely that several

cracks intersect the test interval, in which case the observed ik cannot I
separate- the opening from the closing.

A similar approach for the two dimensional problem is to imagine the ice

pack to be crisscrossed by a family of random cracks, defined by the random
straight lines

where each has the uniform distribution on (o,7) and the normal distances
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YL from the origin to each line form a sequence of Poisson points. Imagine

that associated with each crack is a velocity discontinuity • having

the Gaussian distribution. This describes a random vector field having

structure akin to the velocity field of sea ice. The observations of Hall

and Rothrock can be used to estimate the parameters in the Poisson and
L! Gaussian distributions. These random fields have the following properties.

They consist of discrete rigid floes. The floes have a distribution of sizes

determined by the Poisson field of lines. The Poisson lines are isotropic

and homogeneous. The velocity difference between any two points is the

vector sum of the velocity discontinuities encountered getting from one point

to the other.

At each crack the opening or closing is determined by the projection

of the velocity difference vector onto the normal to the crack.

opening max (o) k& 0'vt e V

closing =min 0, L~ k A'ý' GL,

Thus it is a simple matter to evaluate the total opening and closing for an:.-

realization of the random field.

Of course one can also imagine measuring the velocity at a few points

and constructing the L-strain rate invariants from the observed velocities.

In this way one can test for a relationship between the L-strain rate

"invariants calculated from a few sampled velocities and the total opening A

and total closing found by tallying up the activity at every crack.

In an attempt to carry out this program, parameter values were taken

to be O., D * v 0 1 (arbitrary units) 2 . An 1 = 100 Yr.

triangle was used to simulate the sampling procedure used during AIDJEX.
A large number of random fields were generated.

Each realizatiLn of the random field is defined by the sequences of

random numbers k, •, u Vi ,-4 for H-/. , . Here the R are draun

independently from the uniform distribution on ( r) . The values for

V', form a Poisson process with parameter • . This is achieved by drawing

the increments A'ts "% independently from the exponential distribution

with density A . The process is terminated as soon as S exceeds

100 kilometers since none of the subsequent lines would intersect the 100

kilometer region. Finally the &&L and Vi were drawn independently from

the normal distribution with zero mean and unit variance.
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For each field the velocity was measured at the three specified points

and the L -strain rate invariants )• and B were evaluated.

Also for each field the total opening and closing were evaluated using eq. 7
These were normalized by 1P, and displayed versus 0 in figure 2Y. For each

realization of this random field two points are plotted,( 0, AIM) and

(B, C/DEl ) . From the plot it is clear that there are not unique values

of A/E) and C/EI corresponding to a given 6 . Instead there is a

distribution of values for AAri (and for 9E1 ), and this distribution

changes with 9 . The distributionr sketched in figure e2, are broad in the

sense that probable departures from the mean are at least as large as the mean.

The interpretation of this exercise is that the total opening and closing

are only weakly determined by the L -strain rate invariants based on three

measurements 100 kilometers apart. Had the relationship been a strong one

the distributions in figure 25 would have been narrower, or to say it differ-

ently, the points in figure 2Y would have clustered more closely around

curves like those in figure /• . It may still be useful to imagine these

smooth curves but only with the recognition that the actual opening and

closing scatter widely about the imagined curve:

Y E + random error

+ random error

where the random terms and the B-dependent terms make roughly equal contri-

butions to the total opening and closing.

The total opening and closing are an essentfal part of the theory of

the ice thickness distribution. The above results su4ggest that it will be

difficult to estimate the op,.ing and closing accurately. Perhaps the best

that can be hoped is to drive the thickness distribution calculations with

opening and closing time series which have the right statistical properties

even if'they may have large errors on a day to day basis. The statistical

properties can be inferred from figure 2 . Of course this figure is the

consequence of a particular conceptual model motivated by a limited data

set-the SEASAT SAR data from early October 1978. More data need to be

collected and studied before these ideas can be extended to other times and

places with confidence.
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*1 . The relationship between kinematics and stress

Kinematic data can be used for studying the relationship between

stress and strain for sea ice. Suppose for instance that the state of stress

tensor (f suitably averaged over some region, is related to kinematic quan-

tititt c and the ice geometry S by some expression of the form

Although a- cannot be measured directly, its divergence V.T can be inferred

indirectly from the observed momentum balance when all the other terms in

that balance are known. If a particular function f is hypothesized, it

can be tested by evaluating both sides of the equation 7 6 '' (c, s)

F the left hand side as a residual from the momentum balance and the right

hand side in terms of observed kinematic and ice geometry quantities. This

was one of the objectives of AIDJEX (Maykut et al., 1972). In practice

the test is difficult to make since neither 70 nor 17.F can be deter-

mened very accurately from observations. See Rothrock et al., 1980.

SweUnder special circumstances, meaningful tests may be possible, however.

When the ice deformation is strongly divergent, ice floes tend to move apart.

ki With no floe-to-floe contacts there can be no t7-TO forces. The left hand

side should differ from zero only by measurement error. These errors are

probably small enough to permit a useful test.

Another special situation of interest is when the ice is being forced

up against the coasts by the wind. As the ice moves toward the coast it

converges, becomes stronger, and eventually becomes strong enough to resist

further deformation. If the on shore winds persist, a zone of motionless

ice can widen to several hundred kilometers (Pritchard, 1977). In this situa-

tion, intuition suggests that the V.o vector should point off shore and

should increase in time until it balances the on shore wind stress. With

simultaneous ice trajectories at 100, 200, 300 and 400 km from the coast

it should be possible to observe the amount of convergence required to pro-

duce the required resistance to the wind.

At greater distances from th:, !oasts, there is evidence that the ice

stresses embodied in V'o are usually small. Little success is anticipated

in trying to observe them. Any stress-strain law which provides adequate

resistance to deformation near the shore is probably adequate for full basin
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dynamic modelling. The observations may never be adequate to discriminate
very selectively between candidate stress-strain laws.

5.5 Discussion
I have tried in this paper to bring together some of what is known

about the motion of sea ice. The emphasis has been on the departures of

the true motion from the long term mean circulation. This is a compari-

tively new topic, the investigation of which has only recently been made

possible, mainly by the developments of satellite positioning techniques.

Perhpas because of its newness, the field lacks a clear agenda of questions

to be answered. Instead we are still trying to characterize the motion, to

determine the magnitude of the motion on different scales and to identify

motions which have some intrinsic interest or are related to other phenomena

of interest. It is not surprising that contributors to the field have dif-

ferred in their approaches to observing and interpreting the motion.

The time and space corelations have been used extensively here for

several reasons. First they give a compact description of the motion. In

principle, the correlation function involves one time and two space variables,

but in practice a great deal of information can be extracted from three

functions ,each of a single variable: (T), 31ir) and Q(v) . Second,

these three functions are accessible to observation. Third, propt. Ies of
nearly all kinematic quantities can be deduced from these functionsas illus-

trated, ad nauseum, in the text. Fourth, these functions form the rigorous

basis for answering questions related to interpolation, prediction, and

experiment design.

Many of the results presented here are based on sample autocorrelation

functions deduced from limited data. The data available for esti-

mating correlations at small space lags (less than 100 km) are meagre indeed.

More work along the lines of Hall and Rothrock would help to resolve this

part of the correlation function. The behavior of the correlation functions

( () in the limit of small 'r is an important property of

the motion related to the granular nature of the ice pack.

As mentioned in the textscare must be exercised in choosing correlation

functions or contradictions (negative variances) can occur. In fact this

has happened in some of the calculations done using the correlations tabulated

in Table% with linear interpolation to intermediate distances. This means

that the piecewise linear function defined in the table is not positive
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Table VI. Spatial correlation functions for sea ice velocity.

ri Distance (km)

0 1.00 1.00

100 .98 .95

200 .91 .84

4oo .68 .51
800 .37 .06

1200 .19 -. 09

1600 .10 -. 10

2000 .0 oM-
24OO .0O0 .0oo
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Figure 2. The general circulation of ice in the Arctic Ocean (from Doronin
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Figure 6. (a) The variance of the increments ;(¶+)-%) and for
ice station Caribou 1975-76. % and are arbitrary Cartesian
coordinates.
(b) As in (a) using precise acoustic tracking at ice station Big Bear,
an 8-day period, late sun'mer 1976.
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Figure 8. The power spectral density of the velocity of ice station Caribou 1975-76.
The vmits of spectral density are velocityl/frequency, crn2 sec.--. The
'total velocity variance for these data is 145 ems sec 1 .
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Figure 11. The complex timp correlation function for ice station Caribou, 1975-76.
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Fi,:ure 12. The timie corrvia.uion function for the Lk and V componcrts of ve')ooity
from 28 grid points in the central part of the Arctic Basin, from drift.ni,
buoy data collected during 1979. The cross correlation between LA. and

v in. ,'ih'i . Varlanr(a of Ik= 23 cm2 sec-2 ; variance of V 22 crr s-C-2..
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• Figure 13. (a) The real and imaginary parts of the weight • to be used for inter-

polating to the mid point of a time interval of duration 'r , The ratio
of the measurement error to the standard deviation of velocity is u-/4
(b) The variance of the interpolation error expressed as a fraction of
the variance of the lee veloc~ity. Data from figure 11 were used hero.
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Figure 12. (a) The weight o• Tor prediction over time -.

(b) The prediction error variance versus prediction time. See Figure 13
als~o.

bii i

Figure 15. A schematic representation of the X and # components of velocity at
the points (o,o ), (r',o), (.,r). Isotropy implies Eu- • z

• ,I: , and Ea *E4 , but does not imply equality between

Ea€ and 0,e or • , and E M
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Fiur 19 The varanc of veoct inrmet vesu inevllnth rm
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'Figure 19. Thetogriamce of vheocrinrty incareients veSuointra length foro dreatat

Dosntei aartre forI anndcarp data, 3 pain OctoberNye 1978,6)l'r e.
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Figure 20. The oarian o te strvinorate invariments vesu Soidtr lenih foro deaiftin[ osyntreti aporture randcarp data, spa cinge 100 8, (Beauor 1976).
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Figure 21. Strain ellipses for the AIDJEX buoy array, 800 km diameter (a); and for
the AIDJEX manned camp array, 200 kn diameter (b). The ellipses show
the deformation of a circular region on I May 1975, to the date indicated.
The principal axes of the ellipse are the Drinclpal strains. The angle
from the horizontal broken line to the malor axis is the principal
direction. The rigid body rotation is indicated by the arc from r to *.

Data from the Beaufort Sea, roughly a 500 kn radius about 740N, lh45W.
(From Thorndike and Colony, 1980.)
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Figure 22. Strain ellipses from 1979 (solid line) and 1980 (broken line) driftlnr
buoy date, shovlng the year long deformation of an initial circle
(dravn over Greenland).
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Figure 23. (a) Tmical values for large scale average strain rate quantities are
founct'ons of the radius of the region over wnich the average is taken.
(b) The estimation error for various average strain rate quantities
d(.nends on the radius of' the region ani on the number of measurements
made around the TPerimeter.
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'if, d Wi".0 Pof I n •, r, un1.Ef L V. c V(lovi ty di,. ,on irui t. i ,
were drawtj 1ndapezadently from the unit normul (in-tritution.
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F'gure 25. Di.stributions of the total opening for several ranges of .Data t~aken
from figure 24•.
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